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Abstract 
Imperfect competition represents a well-known topic of modern economic analysis. It can be easily 
noticed in the current economic climate, when manifesting in relation with product price (Bertrand 
type), quantity (Cournot type) or quality. Whether we are talking about the price or output competition 
scenario, a common denominator would be the fact that in the first period of the oligopoly theory, the 
researchers were focused on the static approach of these models. Subsequently, however, an increasing 
interest in a dynamic approach was noted, with a more detailed analyses being considered to better 
align with the economic reality. The present paper intents to analyse a Bertrand dynamic duopoly, with 
players competing in price terms, while making use of a bounded rationality mechanism in order to 
establish charging levels. Based on a two nonlinear difference equational system, the mathematic 
modelling of such a game is focused on the equilibriums state investigation. This way, the current 
analyse triggers the conclusion that adjustment speed of bounded rational player, as well as the 
differentiation degree, strongly impact the stability of the Nash equilibrium. This dynamic approach 
and therefore the conclusions of this paper are intented to generate reader’s interest from both 
mathematical and economic point of view. 
 
Keywords: Bertrand model, oligopoly, stability, product differentiation, dynamic approach.  
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Oligopoly represents a market scenario where several firms actions impact the aggregate offered output 
/ the selling price of the same or different homogeneous products. More precisely, their mutual 
interdependences makes oligopolists consider the answer of his competitors at their own actions. In the 
previous economic literature, many models have been developed, with the special aim to simulate firms 
behavior in oligopoly / duopoly markets. Two of the most important such models are Cournot model 
and Bertrand model.  

First time presented in Augustine Cournot’s book, „Recherches sur les Principes Mathematics de la 
Theorie de la Richesse” (1838), Cournot model describe a duopoly situation, where firms produce 
homogeneous products, deciding to adopt an output strategy. Although was initially written as a 
Cournot's theory review, Bertrand’s price strategy approach (1883) has become the most used model 
in price competition scenarios. In both Cournot and Bertrand initial models, the players are enhanced 
with naive expectations under perfect information, each of them with perfect awareness of his rival’s 
output/price. But in the real economy, it’s impossible that all players be naive and information always 
distributed among them. Hence, the papers conceived in the latest decades, propose different kinds of 
players’ expectations: naive, bounded rational and adaptive (Agiza and Alsadany, 2004). 

Changing the direction and referring now at the game type, Augustine Cournot but also Joseph Louis 
Francois Bertrand studied duopolies where both firms had static expectations regarding his rival’s 
action. The equilibria are globally stable, due to the linearity of the model (cost and demand functions) 
but also to the small number of firms in the market. Either by increasing the number of competitors, by 
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introducing nonlinearities, or both, a dynamical behaviour may become more interesting. The 
equilibrium become unstable, multiple equilibria may appear and complex dynamics can be obtained. 

 

Review of the scientific literature 

Particulary speaking about the Bertrand duopoly, the introduction of some degree of product differen-
tiation (heterogeneous products) is absolutely necessary in order to avoid the so-called Bertrand para-
dox (homogenous product unique equilibrium - price matching marginal cost, both players offer half 
of the existing market output, whilst aggregate profit is zero). This particular scenario rarely appears 
in practice because the products are almost always differentiated in some way other than price (Dubiel-
Teleszynski, 2010; Fanti, et al., 2013). 

A wide range of studies based on Bertrand model can be found in the current oligopoly literature. Using 
general framework previously introduced by Dixit (1979), Singh and Vives (1984) highlight quantity 
competition as dominant strategy in a substitute products scenario, but also price competition 
dominance in a complementary product situation. A little bit later, Hackner (2000), Zanchettin (2006) 
and Tremblay (2011) are making use by a different approach, based on informational asymmetry 
(including demand’s asymmetry) triggering optimality of Bertrand or Cournot-Bertrand models. 
Regardless the approach, demand and cost function linearity were the common denominator for plenty 
of studies (Ahmed, et al., 2006; Zhang, et al., 2009; Ma and Sun, 2015; Puu and Tramontana, 2019; 
Din and Sun, 2020).  

Demand function non-linearity was debated by Ahmed, et al. (2015), in the tentative of investigate a 
dynamic Bertrand duopoly with differentiated goods, where bounded rational players apply a gradient 
adjustment mechanism in order to update their price in each period.  

Ma and Wu (2013) introduced a Bertrand triopoly scenario with bounded rational players, finding out 
that the time delay may not improve the game stability area. Yi and Zeng (2015) analyzed the air-
conditioning chinese market through a dynamic Bertrand duopoly model with quadratic cost function, 
which is closer to reality but introducing a new perspective versus the existing economic literature. 
Both studies common hypothesys is the cost function non-linearity. 

In the next section we apply the tools used before by Agiza and Elsadany (2003) and Zhang et al (2009) 
to investigate the dynamics of Bertrand duopoly model with bounded rational players. Assuming that 
both players offer differentiated products, with price adjustment mechanism based on their last period 
marginal profit, the common declared aim remain own profit maximisation. We will also present the 
explicit parametric equations, the conditions of equilibrium points existence and also local stability. 

 

Research methodology  

We use a duopoly market scenario, with players charging different prices for their products. Let pi(t), 
𝑖 1,2 represent the price charged by firm i during a certain time period 𝑡 0, n . Each firm sells the 
quantity qi, its linearity deriving directly from the inverse demand function expression 

                                 p a q dq ,
𝑖, 𝑗 1,2                                                                                            1  

where a>0 and d ϵ [0, 1]. The maximal value d=1 leads to a homogeneous products scenario, whilst 
behavioural patterns of monopolists are reflected in d=0 situation. Hence, d parameter’s value is 
inversely proportional with differentiation degree (if d value increases, differentiation diminishes), also 
reflecting the nature of the products: positive values highlight substitute products, negatives values 
complements, whilst zero values reflect independent products. The demand function for a specified 
product, decreases in its price, but increases/decreases in rival’s price, in substitute/complement 
products scenario. 
In our model, the basic system in strategic variables, p1 and p2 is: 

                       
 q a p dq  
 q a p dq                                                                                                                 2  
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We further assume that firms production costs are linear, different (𝑐  and 𝑐 ), matching also marginal 
costs. Accordingly, the profit function form become: 

                   𝜋 𝑝 𝑐 𝑞  , ∀ 𝑖 1,2                                                                                     
(3) 

Each firm’s expected price for t+1 period can be found by solving the optimization problem: 
𝑝 𝑡 1 𝑎𝑟𝑔𝑚𝑎𝑥 𝜋 𝑝 𝑡 , 𝑝∗ 𝑡 1
𝑝 𝑡 1 𝑎𝑟𝑔𝑚𝑎𝑥 𝜋 𝑝∗ 𝑡 1 , 𝑝 𝑡

                                                                                                        4  

where 𝑝∗ 𝑡 1  represents j firm expectation regarding his rival’s product price during period t + 1 
(  𝑖, 𝑗 1,2,  𝑖 𝑗 ). 
The i firm marginal profit expression in t period (preceding calculations in Appendix A) is: 

𝜕𝜋
𝜕𝑝

𝑎 1 𝑑 𝑐
1 𝑑

2𝑝
1 𝑑

d𝑝
1 𝑑

,   𝑖, 𝑗 1,2,  𝑖

𝑗                                                                             5  
leads to the unique solution of the optimization problem 
𝑝

𝑎 1 𝑑 𝑐 d𝑝

2
                                                                                                                                           6  

In the real market, the information is usually incomplete, meaning players can use more sophisticated 
expectations, such as bounded rationality. Decision-making represent an adjustment process based on 
the of the game last period outcomes. The bounded rational player has no complete knowledge of 
market, thus he determines production price using the information of local profit maximizers. 
Consequently, decides to increase / decrease its price if he registered positive / negative marginal profit. 
Such an adjustment mechanism has been called myopic by Dixit. Hence, the dynamic adjustment 
mechanism can be modelled as 

𝑝 𝑡 1 𝑝 𝑡 𝛼 𝑝 𝑡
𝜕𝜋 𝑝 , 𝑝

𝜕𝑝
  𝑖, 𝑗

1,2                                                                                              7  

where positive parameter 𝛼  represents the adjustment speed of i firm. In these circumstances, a 
duopoly game with heterogeneous players can be described by using the equational system: 

𝑝 𝑝 𝛼 𝑝
𝑎 1 𝑑 𝑐

1 𝑑
2𝑝

1 𝑑
d𝑝

1 𝑑
 

𝑝 𝑝 𝛼 𝑝
𝑎 1 𝑑 𝑐

1 𝑑
2𝑝

1 𝑑
d𝑝

1 𝑑

                                                                                       8  

‘‘ ′ ’’ denotes the unit-time advancement, meaning if the right side variables represents period t results, 
then the left side ones represent outcomes of period t + 1. 

 
Results and discussion 
Due to the fact that Bertrand model is a economic model, we only study the dynamic behavior of the 
nonnegative equilibrium points (negative variable values almost always are meaningless in economics). 
Setting 𝑝  𝑝   and  𝑝  𝑝  , the fixed points are obtained as nonnegative solutions of the non-linear 
algebric system: 
p 𝑎 1 𝑑 𝑐 2p d𝑝 0 
p 𝑎 1 𝑑 𝑐 2p d𝑝 0 

                                                                                                                 9  

We found four such points: E 0,0 ,  E 0, ,  E , 0  and last but not least   

 E  ,  (Appendix B) 

Points E1, E2, E3 clearly represents boundary equilibriums. The fixed point E4 is a Nash equilibrium 
with full economic meaning, because initial assumption guarantee that d < 2  is an always fulfilled 
must. We are further focusing on the local stability of equilibrium, studying the Jacobian matrix of the 
sytem (8), considering its eigenvalues in  the complex plane study field. The Jacobian matrix at the 
point (p1, p2) has the form: 
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𝐽

1 𝛼
𝑎 1 𝑑 𝑐

1 𝑑
4𝑝

1 𝑑
d𝑝

1 𝑑
𝛼

d𝑝
1 𝑑

𝛼
d𝑝

1 𝑑
1 𝛼

𝑎 1 𝑑 𝑐
1 𝑑

4𝑝
1 𝑑

d𝑝
1 𝑑

                        10  

Proposition 1: The boundary equilibria E1, E2, E3 are unstable equilibrium points. 
Proof: In order to prove the above mentioned result, we first determine Jacobian matrix J(E1): 

𝐽 E

1 𝛼
𝑎 1 𝑑 𝑐

1 𝑑
0

0 1 𝛼
𝑎 1 𝑑 𝑐

1 𝑑

                                                                         11  

whose eigenvalues are 𝛌 1 𝛼 , 𝛌 1 𝛼  

From the a, 𝑐  and 𝑐  positivity, also d ϵ [0, 1], result that |𝛌 | 1, |𝛌 | 1. Then the equilibrium 
point E 0,0  proved to be an unstable node. 
Following the same rationality for the second point E2,  the Jacobian matrix J(E2) will be: 

𝐽  E

⎝

⎜
⎛1 𝛼

𝑎 1 𝑑 𝑐
1 𝑑

𝑎𝑑 1 𝑑 𝑑𝑐
2 1 𝑑

0

𝛼 𝑑
𝑎 1 𝑑 𝑐

2
1 𝛼

𝑎 1 𝑑 𝑐
1 𝑑 ⎠

⎟
⎞

                               12  

This time, the eigenvalues are 𝛌 1 𝛼 , 𝛌 1 𝛼  

Parameters a, 𝑐 , 𝑐  and d initial hipothesys, leads to the conclusion that |𝛌 | 1, |𝛌 | 1. 

Consequentely,  E 0,  represent a saddle point. 

In the same manner we treat point E3; the J(E3) matrix become: 
𝐽  E

⎝

⎜
⎛1 𝛼

𝑎 1 𝑑 𝑐
1 𝑑

𝛼 𝑑
𝑎 1 𝑑 𝑐

2

0 1 𝛼
𝑎 1 𝑑 𝑐

1 𝑑
𝑎𝑑 1 𝑑 𝑑𝑐

2 1 𝑑 ⎠

⎟
⎞

                                  13  

having eigenvalues  𝛌 1 𝛼 , 𝛌 1 𝛼 . Point  E , 0  is 

a second saddle point. 
Presented scenarios transposed in the real economic climate, compell firms to retire from the market. 
It is an economic anomaly, no firm will accept such a charged price lowering, in order to direct the 
economic result down to the breakeven point. Thus, the leaving market option could be anytime 
materialised. 

Proposition 2: The Nash equilibrium point E4 is stable, only if 

 𝛼  𝑝∗  𝛼  𝑝∗ 4  𝛼 𝛼  ∗ ∗   𝛼  𝑝∗  𝛼  𝑝∗  

Proof. Finally, we investigate the local stability of equilibrium point E4. Jacobian matrix is: 
𝐽  E

1 2𝛼
 ∗  

𝛼 𝑑
 ∗ 

𝛼 𝑑  ∗ 1 2𝛼  ∗  
                                                                                         14    

where  𝑝∗  ,  𝑝∗  

The characteristic equation of the J(E4) has the form 𝑓 𝛌 𝛌 𝑇𝑟 𝐽 𝛌 𝐷𝑒𝑡 𝐽 0, where Tr(J) 
/ Det(J) represent Jacobian matrix trace / determinant, described by 
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𝑇𝑟 𝐽 2
2 

1 𝑑
 𝛼  𝑝∗

 𝛼  𝑝∗                                                                                                                  15  

𝐷𝑒𝑡 𝐽  1 2𝛼
 𝑝∗ 

1 𝑑
2𝛼

 𝑝∗ 
1 𝑑

4𝛼 𝛼
  𝑝∗𝑝∗ 

1 𝑑

𝛼 𝛼
 𝑑  𝑝∗𝑝∗ 
1 𝑑

                                     16  

Second order discriminant prove to be positive, meaning that both eigenvalues are real. 

𝑇𝑟 𝐽 4𝐷𝑒𝑡 𝐽  4
8

1 𝑑
 𝛼  𝑝∗  𝛼  𝑝∗ 4 

1 𝑑
 𝛼  𝑝∗  𝛼  𝑝∗  

 4 8𝛼
 𝑝∗ 

1 𝑑
8𝛼

 𝑝∗ 
1 𝑑

16𝛼 𝛼
  𝑝∗𝑝∗ 

1 𝑑
4𝛼 𝛼

 𝑑  𝑝∗𝑝∗ 
1 𝑑

 

4 
1 𝑑

 𝛼  𝑝∗  𝛼  𝑝∗ 4𝛼 𝛼
 𝑑  𝑝∗𝑝∗ 
1 𝑑

0  𝛌 ,𝛌  𝜖 𝑅                                            17  
The local stability conditions of Nash equilibrium are given by Jury’s conditions: 

1 𝑇𝑟 𝐽 𝐷𝑒𝑡 𝐽 0 
1 𝑇𝑟 𝐽 𝐷𝑒𝑡 𝐽 0

𝐷𝑒𝑡 𝐽 1
                                                                                                                                   18  

First one veracity imediately result: 

1 𝑇𝑟 𝐽 𝐷𝑒𝑡 𝐽
2

1 𝑑
 𝛼  𝑝∗  𝛼  𝑝∗ 2  𝛼  𝑝∗  𝛼  𝑝∗

1 𝑑
4𝛼 𝛼

 𝑑  𝑝∗𝑝∗ 
1 𝑑

 

 𝛼 𝛼   ∗ ∗  𝛼 𝛼   ∗ ∗  0 𝐴  

The last two conditions define a bounded region of stability in the plane of speeds adjustment.  

      1 𝑇𝑟 𝐽 𝐷𝑒𝑡 𝐽 4
4

1 𝑑
 𝛼  𝑝∗  𝛼  𝑝∗ 𝛼 𝛼

 2 d 2 d 𝑝∗𝑝∗ 
1 𝑑

0 

      𝐷𝑒𝑡 𝐽 1
2

1 𝑑
 𝛼  𝑝∗  𝛼  𝑝∗ 𝛼 𝛼

 2 d 2 d 𝑝∗𝑝∗ 
1 𝑑

0 

The necessary and sufficient stability condition is obtained by assembling above information: 

 𝛼  𝑝∗  𝛼  𝑝∗ 4  𝛼 𝛼  ∗ ∗   𝛼  𝑝∗

 𝛼  𝑝∗                                            19  
Certainly, the Nash equilibrium point E4 is stable in the area defined by Eq. (19) and loose its stability 
outside this area. In other words, this equation defines a stability region of Nash equilibrium point E4. 

 

Conclusions 

In the present paper, we have studied the dynamics of a repeated Bertrand duopoly model with bounded 
rational players. The mathematic analyse trigger the existence of four equilibrium points (whose 
stability is also investigated) highlighting  the idea that the adjustment speed in a bounded rationality 
scenario (parameter  𝛼  and  𝛼  values) affect the stability of Nash equilibrium point. Lower values of 
speeds of adjustment, guarantee a stable Nash equilibrium of the game, in strictly interdependence with 
the differentiation degree and all other parameters evolution. Adjusting too fast the price speeds, in 
order to increase own profits, the equilibrium may become unstable and the system will fall into chaos 
(dynamics complex phenomenons such as bifurcations, attractors and cycles will appear). We have also 
offer some economic explanations to various dynamic processes in the Bertrand market, providing this 
way, theoretical references for firms activity. 
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Appendix A 

p a q dq    q a p dq  
p a q dq    q a p dq

→   q a p d a p dq  a p ad

dp 𝑑 𝑞   
 

1 𝑑 𝑞 𝑎 1 𝑑 𝑝 𝑑𝑝     𝑞  
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𝑞 𝑎 𝑝
𝑎𝑑 1 𝑑

1 𝑑
𝑑𝑝

1 𝑑
𝑑 𝑝

1 𝑑
 

𝑞
𝑎 𝑎𝑑 𝑝 𝑑 𝑝 𝑎𝑑 𝑎𝑑 𝑑𝑝 𝑑 𝑝

1 𝑑
𝑎 1 𝑑

1 𝑑
𝑝

1 𝑑
d𝑝

1 𝑑
 

 

𝜋 𝑝 𝑐 𝑞
𝑎 1 𝑑

1 𝑑
𝑝

𝑝
1 𝑑

d𝑝 𝑝
1 𝑑

𝑎 1 𝑑 𝑐
1 𝑑

𝑐 𝑝
1 𝑑

d𝑝 𝑐
1 𝑑

 

𝜕𝜋
𝜕𝑝

𝑎 1 𝑑 𝑐
1 𝑑

2𝑝
1 𝑑

d𝑝
1 𝑑

0 𝑝
𝑎 1 𝑑 𝑐 d𝑝

2
 

𝜋 𝑝 𝑐 𝑞
𝑎 1 𝑑

1 𝑑
𝑝

𝑝
1 𝑑

d𝑝 𝑝
1 𝑑

𝑎 1 𝑑 𝑐
1 𝑑

𝑐 𝑝
1 𝑑

d𝑝 𝑐
1 𝑑

 

𝜕𝜋
𝜕𝑝

𝑎 1 𝑑 𝑐
1 𝑑

2𝑝
1 𝑑

d𝑝
1 𝑑

0  𝑝
𝑎 1 𝑑 𝑐 d𝑝

2
 

 
Appendix B 

If 𝑝  𝑝   and  𝑝  𝑝  then  
p 𝑎 1 𝑑 𝑐 2p d𝑝 0 
p 𝑎 1 𝑑 𝑐 2p d𝑝 0 

 

 
a)  p 0 , p 0   E 0,0  

b)  p 0 , 𝑎 1 𝑑 𝑐 2p d𝑝 0  𝑝   E 0,  

c) p 0 ,  𝑎 1 𝑑 𝑐 2p d𝑝 0  𝑝   E , 0  

d) 𝑎 1 𝑑 𝑐 2p d𝑝 0 ,  𝑎 1 𝑑 𝑐 2p d𝑝 0 
 

 
𝑎 1 𝑑 𝑐 2p d𝑝 0 
𝑎 1 𝑑 𝑐 2p d𝑝 0 


2p d𝑝 𝑎 1 𝑑 𝑐     𝑑  

d𝑝 2p 𝑎 1 𝑑 𝑐   2
 

 
2𝑑p 𝑑 𝑝 𝑎𝑑 1 𝑑 𝑑𝑐  

2d𝑝 4p 2𝑎 1 𝑑 2𝑐
 p 4 𝑑 𝑎𝑑 𝑎𝑑 2𝑎 𝑑𝑐 2𝑐  

 

𝑝
𝑎𝑑 1 𝑑 2𝑎 2𝑐 d𝑐

4 𝑑
 2dp

4𝑎𝑑 1 𝑑 8𝑎 8𝑐 4d𝑐
4 𝑑

2𝑎 1 𝑑 2𝑐  

2dp
8𝑎 1 𝑑 8𝑐 2𝑎𝑑 1 𝑑 2𝑑 𝑐 4𝑎𝑑 1 𝑑 8𝑎 4d𝑐 8𝑐

4 𝑑
 

2dp
8𝑎 8ad 8𝑐 2𝑎𝑑 2𝑎𝑑 2𝑑 𝑐 4𝑎𝑑 4𝑎𝑑 8𝑎 4d𝑐 8𝑐

4 𝑑
 

2dp
4ad 2𝑎𝑑 2𝑎𝑑 2𝑑 𝑐 4d𝑐

4 𝑑
 p

ad 1 d 2𝑎 d𝑐 2𝑐
4 𝑑

 

 E  𝑝∗ , 𝑝∗ ,  𝑝∗  
ad 1 d 2𝑎 d𝑐 2𝑐

4 𝑑
 𝑝∗ 𝑎𝑑 1 𝑑 2𝑎 2𝑐 d𝑐

4 𝑑
 

 


