LONG-TERM IMPACT OF FOREIGN DIRECT INVESTMENT ON UNEMPLOYMENT REDUCTION RATE IN THE WESTERN BALKANS COUNTRIES

dr Safet Kurtović¹, dr Boris Siljković² dr Nebojša Denić³ and Nebojša Milanović⁴

¹) Faculty of economics Mostar, University Dzemal Bijedic, Mithata Hujdura Hujki bb, 88 000 Mostar,
²) High school of economics Pec in Leposavic, November 24 bb, 38218 Leposavic,
³) Faculty of information technology, Alfa University, Palmira Toljatija 3, 11070 Novi Beograd

E-mail: safetkurtovic@yahoo.com; E-mail: boris_siljkovic@yahoo.com
E-mail: denicnebojsa@gmail.com

Abstract

The main objective of this paper is to investigate the long-term relationship between foreign direct investment (FDI) and unemployment in the countries of the Western Balkans (WB). The study used panel data time series at the intervals from 1998 to 2012. In addition, sophisticated panel data models, such as panel unit root, co-integration, vector error correction model (VECM) and Granger causality test have been used. Results showed that there is a long-term relationship and co-integration between FDI and unemployment, and that FDI positively influence the reduction of unemployment in most countries of the WB. In the case of Granger causality test, there is causality between the observed variables in the long run.

Keywords

Foreign Direct Investment, Unemployment, Causality, Panel, Co-integration.

JEL Classification

F, F21

Introduction

Foreign direct investment (FDI) is an important driver of economic development in the Western Balkans (WB). In the period from 1997 to 2007, 68.32% of total FDI was directed towards developed economies, 29.27% to developing countries, and only 2.39% to the countries of Eastern Europe and the WB (Josipidis et al. 2011). Share of South East Europe countries in total FDI inflows into transition economies increased from 9.4% in 2000 to 14.7% in 2010. Amount of 5.8% refers to the WB countries (Estrin and Uvalic, 2013). In the period from 1989 to 2006, foreign investors have invested about 31.2 billion dollars in the entire region of the WB, which was about 1.450 per capita, while for ten new EU
member states it was about 4,700 dollars per capita. The largest percentage of investment or 44% is invested in Croatia, 32% in Serbia, and 26% in the remaining four countries. During the period, from 1989 to 2006, the total cumulative investments amounted to 5.2% in Macedonia, 6.7% in Albania and 8.6% in B&H. Condition of FDI per capita for the observed period is little bit different. Croatia has made 3.067 dollars, Montenegro 2.009 dollars, Serbia 1.312 dollars, while other countries in the region had inflows of FDI per capita less than 1,000 dollars (Skuflic, 2010).

The labour market in the countries of the WB is characterized by stagnant and high long-term unemployment. The transition has left strong structural problems that have caused a high rate of unemployment, i.e. non-existence of adequate skills needed for the labour market. All WB countries are faced with a high rate of long-term unemployment, which ranges over 80%, in particular, Albania, Macedonia, Bosnia and Montenegro, while Croatia has the lowest long-term unemployment rate of less than 60% (Nero, 2010). According to data from the Labour Force Surveys (LFS), the WB countries had growing unemployment rates. In these countries, there was in total 2,433,706 unemployed. The average unemployment rate in the region is 26.8%. Youth unemployment rate in 2012 for the age group 15-25 amounted to 63.1% in B&H, 41% in Montenegro, 45.2% and 48.4% in Croatia and Serbia (Bartlett and Prica, 2013).

In line with the defined problem, the main objective of this study is to determine whether there is a long-term relationship between foreign direct investment and unemployment in the countries of the WB. In the research we came up with the results which suggest that there is long-term and positive impact of FDI on employment. Accordingly, the governments of the WB countries should undertake certain reforms of eliminating administrative barriers in order to enable inflow of FDI which will stimulate export trade, encourage domestic consumption through the implementation of appropriate macroeconomic policies, as well as increase capital investment in infrastructure and reduce the unemployment.

In our research we start with \(H_0 \) hypothesis that there is no long-term relationship between FDI and unemployment in the WB countries, i.e. \(H_0: \alpha_1 = 1 \). In addition, we set up an alternative hypothesis that there is a long-term relationship between FDI and unemployment in the WB countries \(H_1: \alpha_1 < 1 \).

The papers structured as follows. The introduction section presents the subject and objectives of the research as well as hypotheses. The second section provides an overview of literature or studies that are closely related to the topic. The third section describes the research methodology and the database from which the figures were used. The fourth section presents the empirical results of the paper. At last, the fifth section concludes the paper.

Literature review

Over the last decade a few studies pertaining to the impact of FDI on the rate of unemployment in transition and developed countries were conducted. Ciftcioglu et al. (2007) in their study, they applied a panel data analysis to determine the effect of net FDI on GDP in nine countries in the period from 1995 to 2003. Within the panel data analysis, they applied the fixed effects model and pooled classical regression and found that economic growth and the unemployment rate negatively affects the growth of net FDI inflows and GDP, while the openness of the economy shows positive correlation. Aktar et al. (2008) scrutinized the impact of FDI, economic growth, and total fixed investment on unemployment in Turkey in the period from 1987 to 2007. In the exploration they applied
Johansen co-integration technique to calculate long-term relationship between the observed variables. Results showed that there are two co-integration vectors during the period in Turkey. Jude and Silaghi Pop (2010) examined the impact of FDI on reducing unemployment rate and growth boost in Central and Eastern Europe. In particular, they probed the effects of FDI on employment growth in host countries, i.e. determining the positive and negative effects. In addition, they investigated the factors that determine the relation between the employment and FDI. Rizvi and Nishat (2010) examined the impact of FDI on growth of the unemployment rate in Pakistan, India and China in the period from 1985 to 2008. In the study, they used the Im-Pesaran-Shin (IPS) and Pedroni tests. Applying the above tests, they have revealed that there is a long-term relationship between the variables, i.e. the strong impact of FDI on unemployment in these countries. Balcerzak and Zurek (2011) examined the impact of FDI on the unemployment rate in Poland. In the research, they applied the VAR techniques and analysed the period from 1995 to 2009. Results showed that FDI leads to a decrease in the unemployment rate in Poland, although it’s a short-term effect.

Mucuk and Demirsel (2013) investigated the relationship between FDI and unemployment rates in seven developing countries. They applied panel unit root, panel co integration and panel causality tests. Research has shown that FDI leads to an increase in employment rates in Turkey and Argentina, while in Thailand, leading to a decrease. In fact, they found that there is a long-term causality or causality between the observed variables. Hisarciklliler et al. (2013) explored the impact of FDI on unemployment in Turkey in the period from 2000 to 2007. They applied a panel data analysis and came to a result that indicates that there is a negative relationship between FDI inflows and reducing unemployment rate. Jaouad (2014) scrutinized the impact of FDI on unemployment in host countries. The research applied a panel co-integration test and came to certain results which show that FDI has a negative effect on unemployment in KSA both in the short as well as long term.

Methodology and data

This research refers to the empirical analysis of the measurement of long-term impact of FDI on reduction of unemployment in six countries of the WB. In the panel data analysis, we used the data within the time intervals from 1998 to 2012. Data were taken from the database of World Bank. Moreover, in our empirical analysis, we started from a simple regression model in which we have only two variables, i.e. we determined that the dependent variable is the unemployment rate (UNPL) and the independent variable is FDI.

\[
UNPL_{it} = \beta_0 + \beta_1 FDI_{it} + \ldots + \epsilon_{it}.
\]

(1)

Our empirical analysis consists of the panel unit root. As the panel unit root tests will use the Levin, Lin and Chu (LLC), Im, Pesaran and Shin (IPS), Hadri test and combining p-value states. LLC test (2002) argued that individual unit root tests have limited power against alternative hypotheses with highly persistent deviations from equilibrium. This is particularly severe in small samples. LLC suggest a more powerful panel unit root test than performing individual unit root tests for each cross-section. The null hypothesis is that each individual time series contains a unit root against the alternative that each time series is stationary. We will introduce the LLC test with the following model (Baltagi, 2005):

\[
\Delta y_{it} = p y_{it-1} + \theta_{l} \Delta y_{it-l} + \alpha_{mi} d_{mt} + \epsilon_{it}, \quad m = 1, 2, 3
\]

(2)

Methodology and data

This research refers to the empirical analysis of the measurement of long-term impact of FDI on reduction of unemployment in six countries of the WB. In the panel data analysis, we used the data within the time intervals from 1998 to 2012. Data were taken from the database of World Bank. Moreover, in our empirical analysis, we started from a simple regression model in which we have only two variables, i.e. we determined that the dependent variable is the unemployment rate (UNPL) and the independent variable is FDI.

\[
UNPL_{it} = \beta_0 + \beta_1 FDI_{it} + \ldots + \epsilon_{it}.
\]

(1)

Our empirical analysis consists of the panel unit root. As the panel unit root tests will use the Levin, Lin and Chu (LLC), Im, Pesaran and Shin (IPS), Hadri test and combining p-value states. LLC test (2002) argued that individual unit root tests have limited power against alternative hypotheses with highly persistent deviations from equilibrium. This is particularly severe in small samples. LLC suggest a more powerful panel unit root test than performing individual unit root tests for each cross-section. The null hypothesis is that each individual time series contains a unit root against the alternative that each time series is stationary. We will introduce the LLC test with the following model (Baltagi, 2005):

\[
\Delta y_{it} = p y_{it-1} + \theta_{l} \Delta y_{it-l} + \alpha_{mi} d_{mt} + \epsilon_{it}, \quad m = 1, 2, 3
\]

(2)
With d_{mi} indicating the vector of deterministic variables and d_{mi} the corresponding vector of coefficients for model $m = 1,2,3$. In particular, $d_{3t} = empty set$, $d_{2t} = 1$ and $d_{1t} = 1, t$.

Since the lag order p_i is unknown, LLC suggest a three-step procedure to implement the test. The approach is mostly described as a three-step procedure with preliminary regressions and normalizations necessitated by cross-sectional heterogeneity. The first step is to perform a special augmented Dickey-Fuller (ADF) regression for each cross-section. The second step is to obtain an estimate of the ratio of the long-run variance to the short-run variance of Δy_{it}, or equivalently of u_{it}. The third step is to compute t-statistic (Hlavackova and Wagner, 2005). LLC test is restrictive in a sense that it requires ρ to be homogenous across i (Baltagi, 2005). Im, Pesaran and Shin test allow for heterogeneous coefficient of ρ_{it} and proposes an alternative testing procedure based on the augmented DF tests when u_{it} is serially correlated with different serial correlation properties across cross-sectional units, i.e., $u_{it} = \psi_{it} u_{it-1} + \alpha_{mt} + \epsilon_{it}$. Substituting this u_{it} in equation (1), we get (Chen, 2013)

$$y_{it} = \rho_i y_{it-1} + \sum_{j=1}^{p_i} \psi_{it} u_{it-j} + \alpha_{it} + \epsilon_{it}, \text{ for at least } i = 1, ... N, t = 1, ..., T. \quad (3)$$

The null hypothesis is, $H_0: \rho_i = 1$ for all i against the alternative hypothesis $H_1: \rho_i < 1$ for at least i. The t-statistic suggested by IPS is defined as

$$t_{ip} = \frac{\sum_{t=1}^{T} \sum_{i=1}^{N} \psi_{it} u_{it}^2}{\sum_{t=1}^{T} \sum_{i=1}^{N} \psi_{it}^2} \quad (4)$$

Where t_{ip} is the individual t-statistic of testing $H_0: \rho_i = 1$. It is known that for a fixed N,

$$t_{ip} \sim \chi^2_1 \quad (5)$$

as $T \to \infty$. IPS assume that t_{ip} has finite means and variances. Then

$$t_{ips} = \frac{N \sum_{i=1}^{N} t_{ip}}{\sum_{i=1}^{N} t_{ip}} \sim \chi^2_1 \quad (6)$$

as $N \to \infty$ by the Lindeber-Levy central limit theorem or limitations. Hence, the t_{ips} of IPS has the limiting distribution as

$$t_{ips} = \frac{N \sum_{i=1}^{N} t_{ip}}{\sum_{i=1}^{N} t_{ip}} \sim \chi^2_1 \quad (7)$$

as $T \to \infty$ by $N \to \infty$ sequentially. The values of $E T_{ip} / \rho_i = 1$ and $\text{var} t_{ip} / \rho_i = 1$ have been computed by IPS via simulations for different values of T and ρ_i (Baltagi, 2005).

Hadri proposes a residual-based Lagrange multiplier test for the null hypothesis that the individual series y_{it}, for $i = 1, ..., N$ are stationary around a deterministic level or trend, against the alternative of a unit root in panel data.

In addition, he considers the two following models:

$$y_{it} = r_{it} + \epsilon_{it} \quad (6)$$

and

$$y_{it} = r_{it} + \beta_{it} + \epsilon_{it} \quad (8)$$

where r_{it} is a random walk and y_{it} is independent and identically distributed (i.i.d. $0, \sigma^2_{it}$, u_{it} and ϵ_{it} are being independent. The null hypothesis can thus be stated as $\sigma^2_{it} = 0$. Moreover, since ϵ_{it} are assumed i.i.d., then under the null hypothesis, y_{it} is stationary around a deterministic level in model (6) and around deterministic trend in model (7) (Hurlin and Mignon, 2007). Also, ϵ_{it} and u_{it} are i.i.d., independently and identically distributed across i and t, with $E \epsilon_{it} = 0, E \epsilon^2_{it} = \sigma^2_{it} > 0$.

78
Let u_{it} be the residuals from the regression y_i on an intercept, for model 1, an intercept and a linear trend term for model 2. Let σ^2_{μ} (σ^2_{τ}) be a consistent estimator of the error variance (corrected for degrees of freedom) from the appropriate regression, which are given by (Giulietti et al. 2007)

$$
\sigma^2_\mu = \frac{1}{N(T-1)} \sum_{t=1}^{T} e_{it}^2,
$$

and

$$
\sigma^2_\tau = \frac{1}{N(T-2)} \sum_{t=1}^{T} e_{it}^2.
$$

Also, let Ξ_{it}^2 be the partial sum process of the residuals. Then the LM statistic is

$$
LM_i = \frac{\frac{1}{N} \sum_{t=1}^{T} e_{it}^2}{\sigma^2_\Xi}, \ u_i, \tau_i
$$

Hadri test considers the standardised statistic

$$
Z_\mu = \frac{\sum_{i=1}^{N} L_{Mi} - \mu_i}{\sigma_\mu} \Rightarrow N(0,1)
$$

and

$$
Z_\tau = \frac{\sum_{i=1}^{N} L_{Mi} - \tau_i}{\sigma_\tau} \Rightarrow N(0,1)
$$

Combining p-value tests. Let G_{1T}, \ldots, G_{MT} be a unit root test for i-th group inequation (1) and $T_i \to \infty$, $G_{1T_1} \Rightarrow G_i$. Besides, let p_i be p-value of a unit root test for cross-section i, i.e., $p_i = 1 - F_{G_{1T_i}}$. Where F is the distribution function of the random variable G_i.

We highlight that the null-hypothesis of the unit root test is not rejected when the p-value is larger than 0.05, if the significance level is set at 95%. In contrast, the null-hypothesis is rejected when p-value is smaller than 0.05. Fisher type test is (Baltagi, 2005)

$$
P = -2 \sum_{i=1}^{N} \ln p_i
$$

which combines the p-values from unit root tests for each cross-section i to test for unit root in panel data. This means that P is distributed as χ^2 with $2N$ degrees of freedom as $T_i \to \infty$ for finite N.

When p_i closes to 0 (null-hypothesis is rejected), $\ln p_i$ closes to $-\infty$ so that large value P will be found and then the null-hypothesis of existing panel unit root will be rejected. In contrast, when p_i closes to 1 (null-hypothesis is not rejected), $\ln p_i$ closes to 0 so that small value P will be found and then the null hypothesis of existing panel unit root will not be rejected. When N is large, Choi (1999) proposed a Z test

$$
Z = \frac{1}{\sqrt{2}} \sum_{i=1}^{N} (-2 \ln p_i -2)
$$

since $E -2 \ln p_i = 2$ and $var -2 \ln p_i = 4$. Assume p_i’s are i.i.d. (independent and identically distributed) and use Lindeberg-Levy central limit theorem to get $Z \Rightarrow N(0,1)$ as $T \to \infty$, followed by $N \to \infty$ (Chen, 2013).

The empirical results

In our study, we perform detesting such as LLC, IPS, Fisher Chi-square and Hadri test using panel unit root test. In the context of time series, it is necessary to determine the presence of stationary data in order to thereby eliminate potentially regression between the
variables within the time and cross-section analysis. In Table 1, we can see the results of panel unit root test.

Table no. 1 Cumulative results of panel unit root test

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exogenous variables: Individual effects

Automatic selection of maximum lags

Automatic lag length selection based on SIC: 0 to 2

Newey-West automatic bandwidth selection and Bartlett kernel

<table>
<thead>
<tr>
<th>Method</th>
<th>Statistic</th>
<th>Prob.**</th>
<th>Cross sections</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levin, Lin & Chu t’-stat</td>
<td>-8.47818</td>
<td>0.0000</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>Null: Unit root (assumes common unit root process)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Statistic</th>
<th>Prob.**</th>
<th>Cross sections</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im, Pesaran and Shin W-stat</td>
<td>-6.27831</td>
<td>0.0000</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>ADF - Fisher Chi-square</td>
<td>55.1244</td>
<td>0.0000</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>PP - Fisher Chi-square</td>
<td>68.3886</td>
<td>0.0000</td>
<td>6</td>
<td>78</td>
</tr>
<tr>
<td>Null: Unit root (assumes individual unit root process)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution.

All other tests assume asymptotic normality.

Based on the calculated $p - value$, which is 0.0000% for LLC and IPS, we can conclude that it is a value that is far less than the accepted critical $p - value$ of 0.05%. This means that in the case of LLC and IPS test we can reject the null hypothesis and conclude that the given tests do not have a unit root. Also in the case of ADF, Fisher Chi-square and PP Fisher Chi square $p - value$ is very low and amounts 0.0000%, which is lower than the set critical value of 0.05%, and therefore we conclude that we can reject the null hypothesis. In the panel unit root test, we introduced the first difference which caused the time series data to be stationary. In addition, within the panel unit root we tested only Hadri test and come up with some results. A low $p - value$ of 0.0000% was obtained in Hadri Z-stat and Heteroscedastic Consistent Z-stat, which entitles us to reject the null hypothesis and conclude that the time-series and cross-sectional data are stationary (Table 2). Based on this, it follows that there is a long-term relationship between FDI and unemployment.

Table no. 2 Results of Hadri test

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exogenous variables: Individual effects, individual linear trends

Newey-West automatic bandwidth selection and Bartlett kernel

Total (balanced) observations: 84

<table>
<thead>
<tr>
<th>Method</th>
<th>Statistic</th>
<th>Prob.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadri Z-stat</td>
<td>5.20874</td>
<td>0.0000</td>
</tr>
<tr>
<td>Heteroscedastic Consistent Z-stat</td>
<td>7.68388</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

* Note: High autocorrelation leads to severe size distortion in Hadri test, leading to over-rejection of the null; ** Probabilities are computed assuming asymptotic normality

Source: Author’s

Note:*, **, and * represent statistical significance at the 1%, 5%, and 10% level, respectively.**
Concluding remarks

In this study we investigated the long-term relationship or impact of FDI on reducing unemployment in the countries of the WB. In the study we used panel data models such as panel unit root. Within the panel, we tested Levin, Lin and Chu (LLC), Im, Peseran and Shin (IPS), Hadri test and combining p-value tests in order to determine whether there is a long-term impact of FDI on reducing unemployment in the WB. Results showed that the data is stationary and there is no unit root, and that there is a long term relationship, or the impact of FDI on reducing unemployment in the countries of the WB.

References

Hisarciklilar, M., Karakas, D. and Asici, A. A., 2013. Can FDI be a Panacea for Unemployment? The Turkish Case. Working Papers Series. [online] Available at:

